TRANSFORMATIONS

Transformations	Formulas	How Parent	Examples	
		Moves		
Vertical Translation	y = f(x) + k	Shift up	$y = x^2 + 2$	
Vertical Translation	y = f(x) - k	Shift down	$y = x^2 - 3$	
Horizontal Translation	y = f(x - h)	Shift right	$y = (x - 1)^2$	
Horizontal Translation	y = f(x + h)	Shift left	$y = (x+2)^2$ $y = 3x^2$	
Vertical Stretch	y = af(x), a > 1	Pulled up and	$y = 3x^2$	
by factor of a		down		
	ar a	(narrower)		
Vertical Compression	y = af(x), 0 < a < 1	Pressed flatter	$y = 1/3x^2$	
by factor of a		(wider)		
Horizontal Stretch	y = f(bx), 0 < b < 1	Pulled out left	$y = (1/3x)^2$	
by factor of 1/b		and right	•	
	85	(wider)		
Horizontal Compression	y = f(bx), b > 1	Pushed in	$y = (3x)^2$	
by factor of 1/b		(narrower)		
Reflection across	y = -f(x)	Flip over the x	$y = -x^2$	
the x-axis				
Reflection across	y = f(-x)	Flip over the y	$y = (-x)^2$	
the y-axis		-,		
Give the transformations for the following (From $f(x) = x^2 + c \cdot g(x)$)				

Give the transformations for the following. (From $f(x) = x^2$ to g(x))

1.
$$g(x) = 5x^2 - 3$$
 V. stretch by 5, V. Trans. down 3

2.
$$g(x) = -2(x+4)^2$$
 Reflect x-axis, v.stretch by 2, H. Trans, left. 4

3.
$$g(x) = 1/2x^2 - 6 \frac{V. comp. by 1/2}{V. trans do wn 6}$$

4.
$$g(x) = (-1/3x)^2 + 5$$
 Reflect y-axis, H. Stretch by 3, Y. Trans. up 5

5.
$$g(x) = -3(x-8)^2 - 1$$
 Reflect x-axis, H. Trans right 8, V. Trans. down 1

6.
$$g(x) = 7(x+3)^2 + 4$$
 v. stretch by 7, H. Trans left 3, v. Trans. up 4

7.
$$g(x) = (-2x)^2 - 3$$
 Reflect. y axis, H. comp. by 1/2, v. Trans down 3

8.
$$g(x) = \frac{1}{4}x^2 + 6 \frac{V}{COMP} \cdot \frac{by'/4}{V} \cdot \frac{V}{V} \cdot \frac{$$

3.1 Practice B

Using Transformations to Graph Quadratic Functions

Graph the function by using a table.

1.
$$f(x) = x^2 + 2x - 1$$

X	$f(x) = x^2 + 2x - 1$	(x, f(x))
-2	$(-2)^2 + 2(-2) - 1$	(-2,-1)
-1	$(-1)^2 + 2(-1) - 1$	(-1,-2)
0	$(0)^2 + 2(0) - 1$	(0,-11
1	$(1)^2 + 2(1) - 1$	((,2)
2	$(2)^2 + 2(2) - 1$	(2,7)

Using the graph of $f(x) = x^2$ as a guide, describe the transformations, and then graph each function. Label each function on the graph.

2.
$$h(x) = (x-2)^2 + 2$$

H. Trans. vight 2, V. Trans. up 2
3.
$$h(x) = -(3x)^2$$

3.
$$h(x) = -(3x)^2$$

Reflect x-axis, Homp by 13

4.
$$h(x) = \left(\frac{1}{2}x\right)^2$$

Use the description to write a quadratic function in vertex form.

5. The parent function $f(x) = x^2$ is reflected across the x-axis, horizontally stretched by a factor of 3 and translated 2 units down to create function g.

$$g(x) = -(1/3x)^2 - 2$$

6. A ball dropped from the top of tower A can be modeled by the function $h(t) = -16t^2 + 400$, where t is the time in seconds after it is dropped and h(t) is its height in feet at that time. A ball dropped from the top of tower B can be modeled by the function $h(t) = -16t^2 + 200$. What transformation describes this change? What does this transformation mean?

