UNIT 1 REVIEW/TEST

PARCC Assessment Readiness

Selected Response

- **1.** $\triangle ABC \cong \triangle DEF$, $EF = x^2 7$, and BC = 4x 2. Find the values of *x*.
 - (A) -1 and 5 (C) 1 and 5
 - **B** -1 and 6 **D** 2 and 3
- 2. For two lines and a transversal, ∠1 and ∠2 are same-side interior angles, ∠2 and ∠3 are vertical angles, and ∠3 and ∠4 are alternate exterior angles. Which classification best describes the angle pair ∠2 and ∠4?
 - (F) Adjacent angles
 - G Alternate interior angles
 - (H) Corresponding angles
 - **①** Vertical angles
- **3.** If $\triangle ABC \cong \triangle PQR$ and $\triangle RPQ \cong \triangle XYZ$, which of the following angles is congruent to $\angle CAB$?

(▲) ∠QRP	C ∠YXZ
B ∠XZY	D ZXYZ

- **4.** For $\triangle ABC$ and $\triangle DEF$, $\angle A \cong \angle F$, and $\overline{AC} \cong \overline{EF}$. Which of the following would allow you to conclude that these triangles are congruent by AAS?
 - (F) $\angle ABC \cong \angle EDF$
 - $\textcircled{G} \angle ACB \cong \angle EDF$
 - $\textcircled{H} \angle BAC \cong \angle FDE$
 - $\bigcirc \angle CBA \cong \angle FED$
- **5.** The measure of $\angle 1$ is 4 times the measure of its supplement. What is the measure, in degrees, of $\angle 1$?

A 36	C 135
B 45	D 144

6. *R* has coordinates (-4, 9). *S* has coordinates (4, -6). What is *RS*?

(' ')	
(F) 8	H 17
G 15	J 23

Use the figure below for Items 7 and 8.

- 7. If JK || ML, what additional information do you need to prove that quadrilateral JKLM is a parallelogram?
 - (A) $\overline{JM} \cong \overline{KL}$
 - (**B**) $\overline{MN} \cong \overline{LN}$
 - \bigcirc \angle *MLK* and \angle *LKJ* are right angles.
 - **(D)** $\angle JML$ and $\angle KLM$ are supplementary.
- **8.** Given that *JKLM* is a parallelogram and that $m \angle KLN = 25^{\circ}$, $m \angle JMN = 65^{\circ}$, and $m \angle JML = 130^{\circ}$, which term best describes quadrilateral *JKLM*?
 - F Rectangle
 - G Rhombus
 - (H) Square
 - (J) Trapezoid
- **9.** The vertices of $\square ABCD$ are A(1, 4), B(4, y), C(3, -2), and D(0, -3). What is the value of y?

A 3	C 5
B 4	D 6

10. Quadrilateral *RSTU* is a kite. What is the length of \overline{RV} ?

F 4 inchesH 6 inchesG 5 inchesJ 13 inches

11. Which of the following is NOT valid for proving that triangles are congruent?

AAA (C SAS
B ASA	D HL

12. Which condition guarantees that $r \parallel s$?

$$(\mathbf{F}) \ \angle 1 \cong \angle 2 \qquad (\mathbf{H}) \ \angle 2 \cong \angle 3 \\ (\mathbf{G}) \ \angle 2 \cong \angle 7 \qquad (\mathbf{J}) \ \angle 1 \cong \angle 4$$

13. Two lines *a* and *b* are cut by a transversal so that $\angle 1$ and $\angle 2$ are same-side interior angles. If $m \angle 1 = (2x + 30)^\circ$ and $m \angle 2 = (4x - 75)^\circ$, what value of *x* proves that $a \parallel b$?

A 22.5	C 45
B 37.5	D 67.5

14. Heather is 1.6 m tall and casts a shadow of 3.5 m. At the same time, a barn casts a shadow of 17.5 m. Find the height of the barn in meters.

F 5	H 14
G 8	J 38

15. What is the measure, in degrees, of $\angle H$?

16. $\triangle JKL \cong \triangle XYZ$, and JK = 10 - 2n. XY = 2, and $YZ = n^2$. What is *KL*?

F	2	H	8
G	4	\bigcirc	16

Use the diagram for Items 17 and 18.

17. Which of these congruence statements can be proved from the information given in the figure?

$$\textcircled{A} \triangle AEB \cong \triangle CED$$

- \bigcirc $\triangle BAC \cong \triangle DAC$
- \bigcirc $\triangle ABD \cong \triangle BCA$
- $\textcircled{D} \triangle DEC \cong \triangle DEA$
- **18.** What other information is needed to prove that $\triangle CEB \cong \triangle AED$ by the HL Congruence Theorem?
 - (F) $\overline{AD} \cong \overline{AB}$
 - $\bigcirc \overline{BE} \cong \overline{AE}$
 - (H) $\overline{CB} \cong \overline{AD}$
 - $\bigcirc \overline{DE} \cong \overline{CE}$
- **19.** What is the measure of $\angle ACD$?

- **20.** Congruent segments have equal measures. A segment bisector divides a segment into two congruent segments. \overrightarrow{XY} intersects \overrightarrow{DE} at X and bisects \overrightarrow{DE} . Which conjecture is valid?
 - (F) $m \angle YXD = m \angle YXE$
 - G Y is between D and E.
 - H DX = XE
 - $\bigcirc DE = YE$

21. \overline{GJ} is a midsegment of $\triangle DEF$, and \overline{HK} is a midsegment of $\triangle GFJ$. What is the length of \overline{HK} ?

- A 2.25 centimeters
- **B** 4 centimeters
- C 7.5 centimeters
- **D** 9 centimeters
- **22.** In $\triangle ABC$ and $\triangle DEF$, $\overline{AC} \cong \overline{DE}$, and $\angle A \cong \angle E$. Which of the following would allow you to conclude by SAS that these triangles are congruent?
 - (F) $\overline{AB} \cong \overline{DF}$
 - $\bigcirc \overline{\mathsf{G}} \ \overline{\mathsf{AC}} \cong \overline{\mathsf{EF}}$
 - (H) $\overline{BA} \cong \overline{FE}$
 - $\bigcirc \overline{CB} \cong \overline{DF}$
- **23.** The coordinates of the vertices of quadrilateral *RSTU* are R(1, 3), S(2, 7), T(10, 5), and U(9, 1). Which term best describes quadrilateral *RSTU*?
 - (A) Parallelogram (C) Rhombus
 - **B** Rectangle **D** Trapezoid
- **24.** If quadrilateral *MNPQ* is a parallelogram, what is the value of *x*?

25. Quadrilateral *RSTU* is a rectangle with diagonals \overline{RT} and \overline{SU} . If RT = 4a + 2 and SU = 6a - 25, what is the value of a?

A 2.7	C 13.5
B 11.5	D 20.5

Use the diagram for Items 26 and 27.

- **26.** Given that $\overline{AB} \cong \overline{CD}$, which additional information would be sufficient to prove that *ABCD* is a parallelogram?
 - (**F**) $\overline{AB} \parallel \overline{CD}$
 - $\bigcirc \overline{AC} \parallel \overline{BD}$
 - $\textcircled{H} \angle CAB \cong \angle CDB$
 - \bigcirc *E* is the midpoint of \overline{AD} .
- **27.** If \overrightarrow{AC} is parallel to \overrightarrow{BD} and $m \angle 1 + m \angle 2 = 140^\circ$, what is the measure of $\angle 3$?
 - (A) 20° (C) 50°
 - **B** 40° **D** 70°

Mini-Tasks

- **28.** $\triangle ABC$ has vertices A(-2, 0), B(2, 2), and C(2, -2). $\triangle DEC$ has vertices D(0, -1), E(2, 0), and C(2, -2). Prove that $\triangle ABC \sim \triangle DEC$.
- **29.** $\triangle ABC$ and $\triangle ABD$ share side \overline{AB} . Given that $\triangle ABC \sim \triangle ABD$, use AAS to explain why these two triangles must also be congruent.
- **30.** Given $\ell \parallel m$ with transversal *t*, explain why $\angle 1$ and $\angle 8$ are supplementary.

31. In $\triangle RST$, S is on the perpendicular bisector of \overline{RT} , $m \angle S = (4n + 16)^\circ$, and $m \angle R = (3n - 18)^\circ$. Find $m \angle R$. Show your work and explain how you determined your answer. **32.** Use the given two-column proof to write a flowchart proof.

Given: $\overline{DE} \cong \overline{FH}$ Prove: DE = FG + GH

Two-column proof:

Statements	Reasons
1. $\overline{DE} \cong \overline{FH}$	1. Given
2. <i>DE</i> = <i>FH</i>	2. Def. of \cong segs.
3. <i>FG</i> + <i>GH</i> = <i>FH</i>	3. Seg. Add. Post.
4. DE = FG + GH	4. Subst.

Performance Tasks

33. a. Complete the following proof by filling in the missing statements and reasons.

Statements	Reasons
1	1. Given
2. $\overline{WX} \cong \overline{WZ}$	2.
3. $\overline{WY} \cong \overline{WY}$	3
4. ∠ <i>XWY</i> ≅ ∠ <i>ZWY</i>	4. Def. of angle bisector
5	5. SAS
6. $\overline{XY} \cong \overline{ZY}$	6.
7	7

b. Another student claims that you don't need SAS to prove this result. Is the student correct? Which congruence theorem could you use? Rewrite the proof using that theorem. **34.** Abstract Furnishings is a company that specializes in designing and making unusual furniture. The diagram shows one of their bookshelf designs.

a. Complete the two-column proof.

Given: $\angle 1 \cong \angle 2$ **Prove:** $\angle 3 \cong \angle 4$

Statements	Reasons
1. ∠1 ≅ ∠2	1. Given
2. m∠1 = m∠2	2. Def. of $\cong \angle s$
3. ∠1 ≅ _ ?	3. Vert. ∠s Thm.
4. m∠1 = m∠3	4. Def. of $\cong \angle s$
5. ∠2 ≅ ∠4	5
6. m∠2 = m∠4	6. Def. of $\cong \angle s$
7. m∠1 = m∠4	7
8. m∠3 =?	8. Substitution
9. ∠3 ≅ ∠4	9. Def. of $\cong \angle s$

- **b.** The designer wants to change the design so that *AB* is smaller, while keeping *C* fixed in place. How will this affect the numbered angle measures? Include a sketch with your answer.
- **c.** If $\angle 1 \cong \angle 2$ is still true in the new design, can you still conclude $\angle 3 \cong \angle 4$? Explain why or why not.

wy.hrw.com Online Assessment Go online for updated, PARCC-aligned assessment readiness.