UNIT 1 REVIEW/TEST

PARCC Assessment Readiness

Selected Response

1. $\triangle A B C \cong \triangle D E F, E F=x^{2}-7$, and $B C=4 x-2$. Find the values of x.
(A) -1 and 5
(C) 1 and 5
(B) -1 and 6
(D) 2 and 3
2. For two lines and a transversal, $\angle 1$ and $\angle 2$ are same-side interior angles, $\angle 2$ and $\angle 3$ are vertical angles, and $\angle 3$ and $\angle 4$ are alternate exterior angles. Which classification best describes the angle pair $\angle 2$ and $\angle 4$?
(F) Adjacent angles
(G) Alternate interior angles
(H) Corresponding angles
(J) Vertical angles
3. If $\triangle A B C \cong \triangle P Q R$ and $\triangle R P Q \cong \triangle X Y Z$, which of the following angles is congruent to $\angle C A B$?
(A) $\angle Q R P$
(C) $\angle Y X Z$
(B) $\angle X Z Y$
(D) $\angle X Y Z$
4. For $\triangle A B C$ and $\triangle D E F, \angle A \cong \angle F$, and $\overline{A C} \cong \overline{E F}$. Which of the following would allow you to conclude that these triangles are congruent by AAS?
(F) $\angle A B C \cong \angle E D F$
(G) $\angle A C B \cong \angle E D F$
(H) $\angle B A C \cong \angle F D E$
(J) $\angle C B A \cong \angle F E D$
5. The measure of $\angle 1$ is 4 times the measure of its supplement. What is the measure, in degrees, of $\angle 1$?
(A) 36
(C) 135
(B) 45
(D) 144
6. R has coordinates $(-4,9)$. S has coordinates $(4,-6)$. What is $R S$?
(F) 8
(H) 17
(G) 15
(J) 23

Use the figure below for Items 7 and 8.

7. If $\overline{J K} \| \overline{M L}$, what additional information do you need to prove that quadrilateral $J K L M$ is a parallelogram?
(A) $\overline{J M} \cong \overline{K L}$
(B) $\overline{M N} \cong \overline{L N}$
(C) $\angle M L K$ and $\angle L K J$ are right angles.
(D) $\angle J M L$ and $\angle K L M$ are supplementary.
8. Given that $J K L M$ is a parallelogram and that $\mathrm{m} \angle K L N=25^{\circ}, \mathrm{m} \angle J M N=65^{\circ}$, and $\mathrm{m} \angle J M L=130^{\circ}$, which term best describes quadrilateral $J K L M$?
(F) Rectangle
(G) Rhombus
(H) Square
(J) Trapezoid
9. The vertices of $\square A B C D$ are $A(1,4), B(4, y)$, $C(3,-2)$, and $D(0,-3)$. What is the value of y ?
(A) 3
(C) 5
(B) 4
(D) 6
10. Quadrilateral RSTU is a kite. What is the length of $\overline{R V}$?

(F) 4 inches
(H) 6 inches
(G) 5 inches
(J) 13 inches
11. Which of the following is NOT valid for proving that triangles are congruent?
(A) AAA
(C) SAS
(B) ASA
(D) HL
12. Which condition guarantees that $r \| s$?
(F) $\angle 1 \cong \angle 2$
(H) $\angle 2 \cong \angle 3$
(G) $\angle 2 \cong \angle 7$
(J) $\angle 1 \cong \angle 4$
13. Two lines a and b are cut by a transversal so that $\angle 1$ and $\angle 2$ are same-side interior angles. If $\mathrm{m} \angle 1=(2 x+30)^{\circ}$ and $\mathrm{m} \angle 2=(4 x-75)^{\circ}$, what value of x proves that $a \| b$?
(A) 22.5
(C) 45
(B) 37.5
(D) 67.5
14. Heather is 1.6 m tall and casts a shadow of 3.5 m . At the same time, a barn casts a shadow of 17.5 m . Find the height of the barn in meters.
(F) 5
(H) 14
(G) 8
(J) 38
15. What is the measure, in degrees, of $\angle H$?

(A) 17
(C) 65
(B) 44
(D) 71
16. $\triangle J K L \cong \triangle X Y Z$, and $J K=10-2 n . X Y=2$, and $Y Z=n^{2}$. What is $K L$?
(F) 2
(H) 8
(G) 4
(J) 16

Use the diagram for Items 17 and 18.

17. Which of these congruence statements can be proved from the information given in the figure?
(A) $\triangle A E B \cong \triangle C E D$
(B) $\triangle B A C \cong \triangle D A C$
(C) $\triangle A B D \cong \triangle B C A$
(D) $\triangle D E C \cong \triangle D E A$
18. What other information is needed to prove that $\triangle C E B \cong \triangle A E D$ by the HL Congruence Theorem?
(F) $\overline{A D} \cong \overline{A B}$
(G) $\overline{B E} \cong \overline{A E}$
(H) $\overline{C B} \cong \overline{A D}$
(J) $\overline{D E} \cong \overline{C E}$
19. What is the measure of $\angle A C D$?

(A) 40°
(C) 100°
(B) 80°
(D) 140°
20. Congruent segments have equal measures. A segment bisector divides a segment into two congruent segments. $\overrightarrow{X Y}$ intersects $\overline{D E}$ at X and bisects $\overline{D E}$. Which conjecture is valid?
(F) $\mathrm{m} \angle Y X D=\mathrm{m} \angle Y X E$
(G) Y is between D and E.
(H) $D X=X E$
(J) $D E=Y E$
21. $\overline{G J}$ is a midsegment of $\triangle D E F$, and $\overline{H K}$ is a midsegment of $\triangle G F J$. What is the length of $\overline{H K}$?

(A) 2.25 centimeters
(B) 4 centimeters
(C) 7.5 centimeters
(D) 9 centimeters
22. In $\triangle A B C$ and $\triangle D E F, \overline{A C} \cong \overline{D E}$, and $\angle A \cong \angle E$. Which of the following would allow you to conclude by SAS that these triangles are congruent?
(F) $\overline{A B} \cong \overline{D F}$
(G) $\overline{A C} \cong \overline{E F}$
(H) $\overline{B A} \cong \overline{F E}$
(J) $\overline{C B} \cong \overline{D F}$
23. The coordinates of the vertices of quadrilateral $R S T U$ are $R(1,3), S(2,7), T(10,5)$, and $U(9,1)$. Which term best describes quadrilateral RSTU?
(A) Parallelogram
(C) Rhombus
(B) Rectangle
(D) Trapezoid
24. If quadrilateral $M N P Q$ is a parallelogram, what is the value of x ?

(F) 36
(H) 38
(G) 37
(J) 72
25. Quadrilateral RSTU is a rectangle with diagonals $\overline{R T}$ and $\overline{S U}$. If $R T=4 a+2$ and $S U=6 a-25$, what is the value of a ?
(A) 2.7
(C) 13.5
(B) 11.5
(D) 20.5

Use the diagram for Items 26 and 27.

26. Given that $\overline{A B} \cong \overline{C D}$, which additional information would be sufficient to prove that $A B C D$ is a parallelogram?
(F) $\overline{A B} \| \overline{C D}$
(G) $\overline{A C} \| \overline{B D}$
(H) $\angle C A B \cong \angle C D B$
(J) E is the midpoint of $\overline{A D}$.
27. If $\overleftrightarrow{A C}$ is parallel to $\overleftrightarrow{B D}$ and $\mathrm{m} \angle 1+\mathrm{m} \angle 2=140^{\circ}$, what is the measure of $\angle 3$?
(A) 20°
(C) 50°
(B) 40°
(D) 70°

Mini-Tasks

28. $\triangle A B C$ has vertices $A(-2,0), B(2,2)$, and $C(2,-2)$. $\triangle D E C$ has vertices $D(0,-1), E(2,0)$, and $C(2,-2)$. Prove that $\triangle A B C \sim \triangle D E C$.
29. $\triangle A B C$ and $\triangle A B D$ share side $\overline{A B}$. Given that $\triangle A B C \sim \triangle A B D$, use AAS to explain why these two triangles must also be congruent.
30. Given $\ell \| m$ with transversal t, explain why $\angle 1$ and $\angle 8$ are supplementary.

31. In $\triangle R S T, S$ is on the perpendicular bisector of $\overline{R T}$, $\mathrm{m} \angle \mathrm{S}=(4 n+16)^{\circ}$, and $\mathrm{m} \angle R=(3 n-18)^{\circ}$. Find $\mathrm{m} \angle R$. Show your work and explain how you determined your answer.
32. Use the given two-column proof to write a flowchart proof.

Given: $\overline{D E} \cong \overline{F H}$
Prove: $D E=F G+G H$
Two-column proof:

Statements	Reasons
1. $\overline{D E} \cong \overline{F H}$	1. Given
2. $D E=F H$	2. Def. of \cong segs.
3. $F G+G H=F H$	3. Seg. Add. Post.
4. $D E=F G+G H$	4. Subst.

Performance Tasks

33. a. Complete the following proof by filling in the missing statements and reasons.
Given: $\overline{W Y}$ bisects $\angle X W Z$,

$$
\overline{W X} \cong \overline{W Z}
$$

Prove: $\overline{W Y}$ bisects $\overline{X Z}$

Statements	Reasons
1. \bar{c} ?	1. Given
2. $\overline{W X} \cong \overline{W Z}$	2. $\frac{c}{\text { ? }}$
3. $\overline{W Y} \cong \overline{W Y}$	3. $\frac{\text { ? }}{\text { ? }}$
4. $\angle X W Y \cong \angle Z W Y ~$	4. Def. of angle
	bisector
5. $\frac{\text { ? }}{} \quad$ 5. SAS	
6. $\overline{X Y} \cong \overline{Z Y}$	6. ?
7. ?	7. ?

b. Another student claims that you don't need SAS to prove this result. Is the student correct? Which congruence theorem could you use? Rewrite the proof using that theorem.
34. Abstract Furnishings is a company that specializes in designing and making unusual furniture. The diagram shows one of their bookshelf designs.

a. Complete the two-column proof.

Given: $\angle 1 \cong \angle 2$
Prove: $\angle 3 \cong \angle 4$

Statements	Reasons
1. $\angle 1 \cong \angle 2$	1. Given
2. $\mathrm{m} \angle 1=\mathrm{m} \angle 2$	2. Def. of $\cong \angle \mathrm{s}$
3. $\angle 1 \cong$?	3. Vert. $\angle \mathrm{s}$ Thm.
4. $\mathrm{m} \angle 1=\mathrm{m} \angle 3$	4. Def. of $\cong \angle \mathrm{s}$
5. $\angle 2 \cong \angle 4$	5. ?
6. $\mathrm{m} \angle 2=\mathrm{m} \angle 4$	6. Def. of $\cong \angle \mathrm{s}$
7. $\mathrm{m} \angle 1=\mathrm{m} \angle 4$	7. ?
8. $\mathrm{m} \angle 3=\frac{\text { ? }}{}$	8. Substitution
9. $\angle 3 \cong \angle 4$	9. Def. of $\cong \angle \mathrm{s}$

b. The designer wants to change the design so that $A B$ is smaller, while keeping C fixed in place. How will this affect the numbered angle measures? Include a sketch with your answer.
c. If $\angle 1 \cong \angle 2$ is still true in the new design, can you still conclude $\angle 3 \cong \angle 4$? Explain why or why not.

my.hrw.com
Online Assessment
Go online for updated, PARCC-aligned assessment readiness.

