10.5 Factoring Polynomials

Use the Factor Theorem to verify that each linear binomial is a factor of the given polynomial. Then use ynthetic division to write the polynomial as a product (factor).

1.
$$(x + 5)$$
; $P(x) = 2x^2 + 6x - 20$

$$2(x+5)(x-2)$$

3.
$$(x + 2)$$
; $P(x) = 3x^3 + 12x^2 + 17x + 10$

$$(x+2)(3x^2+6x+5)$$

2.
$$(x-1)$$
; $P(x) = x^4 - 6x^3 + 4x^2 + 1$

$$\frac{(x-1)(x^3-5x^2-x-1)}{4.(x-8):P(x)=x^4-8x^3-4x^2+33x-8}$$

$$(x-8)(x^3-4x+1)$$

Factor each expression.

5.
$$16x^3 - 12x^2 + 20x - 15$$

$$\frac{(4 \times -3) (4 \times^2 + 5)}{x^6 - 10x^5 + 25x^4}$$

7.
$$x^6 - 10x^5 + 25x^6$$

$$\chi^{4} (\chi -5)^{2}$$

9
$$250x^4 + 54x$$

6.
$$3x^6 + 54x^4 + 243x^2$$

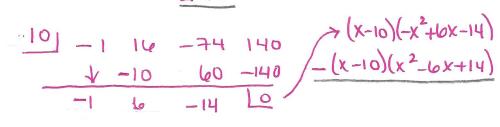
$$\frac{3x^{2}(x^{2}+9)(x^{2}+9)}{8. 6x^{3}+12x^{2}+4x+8}$$

8.
$$6x^3 + 12x^2 + 4x + 8$$

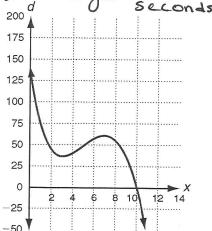
$$\frac{2(3x^2+2)(x+2)}{10. -3x^5 + 24x^2}$$

10.
$$-3x^5 + 24x^2$$

$$2x(5x+3)(25x^2-15x+9)$$


$$-3x^{2}(x-2)(x^{2}+2x+4)$$

Solve.


11. The voltage generated by an electrical circuit changes over time according to the polynomial $V(t) = t^3 - 4t^2 - 25t + 100$, where V is in volts and t is in seconds. Factor the polynomial to find the times when the voltage is equal to zero.

Voltage equals Zero @ 4s + 5s (can't have negative seconds)

12. Since 2006, the water level in a certain pond has been modeled by the polynomial $d(x) = -x^3 + 16x^2 - 74x + 140$, where the depth d, is measured in feet over x years. Identify the year that the pond will dry up. Use the graph to factor d(x).

$$(x-10)(-x^2+6x-14)$$

 $-(x-10)(x^2-6x+14)$

