Vocabulary:

- When a point is the same distance from two or more objects, the point is said to be from the objects.

Distance and Perpendicular Bisectors

Theorem	Hypothesis	Conclusion
Perpendicular Bisector Theorem: If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.		
Converse of the Perpendicular Bisector Theorem: If a point is equidistant from the endpoints of a segment, then it is on the perpendicular bisector of the segment		

Example 1: Applying the Perpendicular Bisector Theorem and it's Converse.

Find each measure

c)

Check it out! Find each measure.

a) Given that line I is the perpendicular bisector of $D E$ and $E G=14.6$, find $D G$.
b) Given that $D E=20.8, D G=36.4$, and $E G=36.4$, find $E F$.
\qquad

Distance and Angle Bisectors
Theorem

Angle Bisector Theorem:
If a point is on the bisector of an angle,
then it is equidistant from the sides of
the angle

Theorem:
Converse of the Angle Bisector
equidistant from the sides of the angle,
then it is on the bisector of the angle.

Example 2: Applying the Angle Bisector Theorems
Find each measure.
a) $L M$
b) $m \angle A B D$, given
c) $m \angle T S U$
that $m \angle A B C=112^{\circ}$

Check it out! Find each measure.

a) Given that $\overline{Y W}$ bisects $\angle X Y Z$ and $W Z$ $=3.05$, find $W X$.
b) Given that $\angle W Y Z=63^{\circ}, X W=5.7$, and $Z W=5.7$, find $\angle X Y Z$

Example 3: Write an equation in point-slope form, $y-y_{1}=m\left(x-x_{1}\right)$, for the perpendicular bisector of the segment with endpoints $A(-1,6)$ and $B(3,4)$.

