

GUIDED PRACTIC		
1. Vocabulary The solution (<i>roots</i> or <i>zeros</i>)	ations of the equation $3x^2 + 2x$	+ 5 = 0 are its
SEE EXAMPLE 1 Find the zeros of each function by using a graph and table.		
2. $f(x) = x^2 + 4x - 5$	3. $g(x) = -x^2 + 6x - 8$	4. $f(x) = x^2 - 1$
SEE EXAMPLE 2 Find the zeros of each function by factoring.		
5. $f(x) = x^2 - 7x + 6$	6. $g(x) = 2x^2 - 5x + 2$ 9. $g(x) = x^2 - 6x - 16$	7. $h(x) = x^2 + 4x$
8. $f(x) = x^2 + 9x + 20$	9. $g(x) = x^2 - 6x - 16$	10. $h(x) = 3x^2 + 13x + 4$
SEE EXAMPLE 3 11. Archery The height <i>h</i> of an arrow in feet is modeled by $h(t) = -16t^2 + 63t + 4$, where <i>t</i> is the time in seconds since the arrow was shot. How long is the arrow in the air?		
SEE EXAMPLE 4 Find the roots of each equation by factoring.		
12. $x^2 - 6x = -9$	13. $5x^2 + 20 = 20x$	14. $x^2 = 49$
SEE EXAMPLE 5 Write a quadratic function in standard form for each given set of zeros.		
15. 3 and 4	16. -4 and -4	17. 3 and 0

PRACTICE AND PROBLEM SOLVING

Independent Practice			
For Exercises	See Example		
18–20	1		
21–26	2		
27	3		
28–33	4		
34–36	5		

Find the zeros of each function by using a graph and table.				
18. $f(x) = -x^2 + 4x - 3$	19. $g(x) = x^2 + x - 6$	20. $f(x) = x^2 - 9$		
Find the zeros of each function by factoring.				
21. $f(x) = x^2 + 11x + 24$	22. $g(x) = 2x^2 + x - 10$	23. $h(x) = -x^2 + 9x$		
24. $f(x) = x^2 - 15x + 54$	25. $g(x) = x^2 + 7x - 8$	26. $h(x) = 2x^2 - 12x + 18$		

27. Biology A bald eagle snatches a fish from a lake and flies to an altitude of 256 ft. The fish manages to squirm free and falls back down into the lake. Its height *h* in feet can be modeled by $h(t) = 256 - 16t^2$, where *t* is the time in seconds. How many seconds will the fish fall before hitting the water?

Find the roots of each equation by factoring.

28. $x^2 + 8x = -16$	29. $4x^2 = 81$	30. $9x^2 + 12x + 4 = 0$
31. $36x^2 - 9 = 0$	32. $x^2 - 10x + 25 = 0$	33. $49x^2 = 28x - 4$

Write a quadratic function in standard form for each given set of zeros.

Find the zeros of each function.

37. $f(x) = 6x - x^2$	38. $g(x) = x^2 - 25$	39. $h(x) = x^2 - 12x + 36$
40. $f(x) = 3x^2 - 12$	41. $g(x) = x^2 - 22x + 121$	42. $h(x) = 30 + x - x^2$
43. $f(x) = x^2 - 11x + 30$	44. $g(x) = x^2 - 8x - 20$	45. $h(x) = 2x^2 + 18x + 28$