GUIDED PRACTICE

1. Vocabulary The highest or lowest point on the graph of a quadratic function is the ?. (vertex or parabola)

SEE EXAMPLE 1 Graph each function by using a table.
2. $f(x)=-2 x^{2}-4$
3. $g(x)=-x^{2}+3 x-2$
4. $h(x)=x^{2}+2 x$

SEE EXAMPLE 2 Using the graph of $f(x)=x^{2}$ as a guide, describe the transformations, and then graph each function.
5. $d(x)=(x-4)^{2}$
6. $g(x)=(x-3)^{2}+2$
7. $h(x)=(x+1)^{2}-3$
8. $g(x)=3 x^{2}$
9. $h(x)=\left(\frac{1}{8} x\right)^{2}$
10. $p(x)=0.25 x^{2}$
11. $h(x)=-(5 x)^{2}$
12. $g(x)=4.2 x^{2}$
13. $d(x)=-\frac{2}{3} x^{2}$

SEE EXAMPLE 3

SEE EXAMPLE 4 Use the description to write each quadratic function in vertex form.
14. The parent function $f(x)=x^{2}$ is vertically stretched by a factor of 2 and translated 3 units left to create g.
15. The parent function $f(x)=x^{2}$ is reflected across the x-axis and translated 6 units down to create h.

SEE EXAMPLE 5
16. Physics The safe working load L in pounds for a natural rope can be estimated by $L(r)=5920 r^{2}$, where r is the radius of the rope in inches. For an old rope, the function $L_{o}(r)=4150 r^{2}$ is used to estimate its safe working load. What kind of transformation describes this change, and what does this transformation mean?

PRACTICE AND PROBLEM SOLVING

Independent Practice	
For Exercises	See Example
$17-19$	1
$20-25$	2
$26-28$	3
$29-30$	4
31	5

my.hrw.com

Online Extra Practice
Graph each function by using a table.
17. $f(x)=-x^{2}+4$
18. $g(x)=x^{2}-2 x+1$
19. $h(x)=2 x^{2}+4 x-1$

Using the graph of $f(x)=x^{2}$ as a guide, describe the transformations, and then graph each function.
20. $g(x)=x^{2}-2$
21. $h(x)=(x+5)^{2}$
22. $j(x)=(x-1)^{2}$
23. $g(x)=(x+4)^{2}-3$
24. $h(x)=(x+2)^{2}+2$
25. $j(x)=(x-4)^{2}-9$
26. $g(x)=\frac{4}{7} x^{2}$
27. $h(x)=-20 x^{2}$
28. $j(x)=\left(\frac{1}{3} x\right)^{2}$

Use the description to write each quadratic function in vertex form.
29. The parent function $f(x)=x^{2}$ is reflected across the x-axis, vertically compressed by a factor of $\frac{1}{2}$, and translated 1 unit right to create g.
30. The parent function $f(x)=x^{2}$ is vertically stretched by a factor of 2.5 and translated 2 units left and 1 unit up to create h.
31. Consumer Economics The average gas mileage m in miles per gallon for a compact car is modeled by $m(s)=-0.015(s-47)^{2}+33$, where s is the car's speed in miles per hour. The average gas mileage for an SUV is modeled by $m_{u}(s)=-0.015(s-47)^{2}+15$. What kind of transformation describes this change, and what does this transformation mean?

