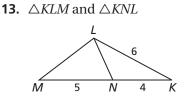
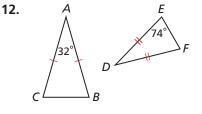
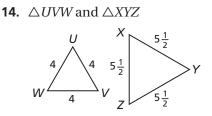

PRACTICE AND PROBLEM SOLVING

Independent Practice	
For Exercises	See Example
11–12	1
13–14	2
15–16	3
17–18	4
19	5

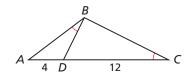
my.hrw.com

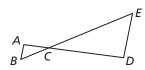

Online Extra Practice


Explain why the triangles are similar and write a similarity statement.

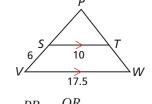


11.

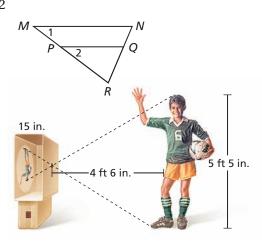

Verify that the given triangles are similar.



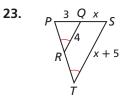
Multi-StepExplain why the triangles are similar and then find each length.15. AB16. PS

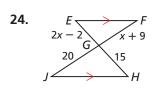


17. Given: CD = 3AC, CE = 3BC


Prove: $\triangle ABC \sim \triangle DEC$ **Prove:** $\angle 1 \cong \angle 2$

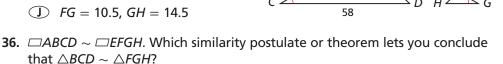
19. Photography The picture shows a person taking a pinhole photograph of himself. Light entering the opening reflects his image on the wall, forming similar triangles. What is the height of the image to the nearest tenth of a foot?

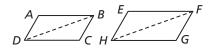

18. Given:
$$\frac{PR}{MR} = \frac{QR}{NR}$$



Draw $\triangle JKL$ and $\triangle MNP$. Determine if you can conclude that $\triangle JKL \sim \triangle MNP$ based on the given information. If so, which postulate or theorem justifies your response?

20.
$$\angle K \cong \angle N, \frac{JK}{MN} = \frac{KL}{NP}$$
 21. $\frac{JK}{MN} = \frac{KL}{NP} = \frac{JL}{MP}$ **22.** $\angle J \cong \angle M, \frac{JL}{MP} = \frac{KL}{NP}$

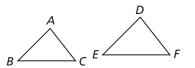

Find the value of *x*.


TEST PREP

- **34.** What is the length of \overline{TU} ?
 - **(C)** 48 **A** 36
 - **B** 40 **D** 90
- **35.** Which dimensions guarantee that $\triangle BCD \sim \triangle FGH$?
 - **(F)** *FG* = 11.6, *GH* = 8.4
 - **G** *FG* = 12, *GH* = 14
 - (H) FG = 11.4, GH = 11.4
 - (J) FG = 10.5, GH = 14.5

42

- (\mathbf{A}) (\mathbf{A}) \bigcirc SAS
- **B** SSS **D** None of these

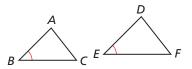


37. Gridded Response If 6, 8, and 12 and 15, 20, and x are the lengths of the corresponding sides of two similar triangles, what is the value of x?

CHALLENGE AND EXTEND

HOT 38. Prove the SSS Similarity Theorem.

Given: $\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$ **Prove:** $\triangle ABC \sim \triangle DEF$

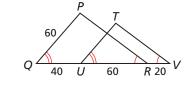


R

(*Hint*: Assume that AB < DE and choose point X on \overline{DE} so that $\overline{AB} \cong \overline{DX}$. Then choose point *Y* on \overline{DF} so that $XY \parallel \overline{EF}$. Show that $\triangle DXY \sim \triangle DEF$ and that $\triangle ABC \cong \triangle DXY$.)

HOT 39. Prove the SAS Similarity Theorem.

Given: $\angle B \cong \angle E, \frac{AB}{DE} = \frac{BC}{EE}$ **Prove:** $\triangle ABC \sim \triangle DEF$


(*Hint*: Assume that AB < DE and choose point X on \overline{DE} so that $\overline{EX} \cong \overline{BA}$. Then choose point *Y* on \overline{EF} so that $\angle EXY \cong \angle EDF$. Show that $\triangle XEY \sim \triangle DEF$ and that $\triangle ABC \cong \triangle XEF$.)

HOT 40. Given $\triangle ABC \sim \triangle XYZ$, $m \angle A = 50^\circ$, $m \angle X = (2x + 5y)^\circ$, $m \angle Z = (5x + y)^\circ$, and that $m \angle B = (102 - x)^\circ$, find $m \angle Z$.

ΜΑΤΗΕΜΑΤΙCAL PRACTICES

FOCUS ON MATHEMATICAL PRACTICES

- **Hor** 41. Reasoning Explain why angle-side-angle (ASA) is not given as a relationship that proves two triangles are similar.
- **Hor** 42. Justify $\triangle ABC$ and $\triangle JKL$ are isosceles triangles with congruent legs. $\angle B$ and $\angle K$ are both 40° angles. Must the two triangles be similar? Explain.
- **HOT** 43. Problem Solving $\triangle EFG \sim \triangle PQR$. The following side lengths are given: PQ = 3, QR = 5, and EG = 24. The perimeter of $\triangle EFG$ is 56. Find the unknown side lengths of each triangle.

