## PRACTICE AND PROBLEM SOLVING

| Independent Practice |  |
| :---: | :---: |
| For <br> Exercises | See <br> Example |
| $11-12$ | 1 |
| $13-14$ | 2 |
| $15-16$ | 3 |
| $17-18$ | 4 |
| 19 | 5 |

Explain why the triangles are similar and write a similarity statement.

Verify that the given triangles are similar.
13. $\triangle K L M$ and $\triangle K N L$

11.

12.


## my.hrw.com



Online Extra Practice

Multi-Step Explain why the triangles are similar and then find each length.
15. $A B$
17. Given: $C D=3 A C, C E=3 B C$

Prove: $\triangle A B C \sim \triangle D E C$
Prove: $\angle 1 \cong \angle 2$

19. Photography The picture shows a person taking a pinhole photograph of himself. Light entering the opening reflects his image on the wall, forming similar triangles. What is the height of the image to the nearest tenth of a foot?
16. $P S$

18. Given: $\frac{P R}{M R}=\frac{Q R}{N R}$

14. $\triangle U V W$ and $\triangle X Y Z$


Draw $\triangle J K L$ and $\triangle M N P$. Determine if you can conclude that $\triangle J K L \sim \triangle M N P$ based on the given information. If so, which postulate or theorem justifies your response?
20. $\angle K \cong \angle N, \frac{J K}{M N}=\frac{K L}{N P}$
21. $\frac{J K}{M N}=\frac{K L}{N P}=\frac{J L}{M P}$
22. $\angle J \cong \angle M, \frac{J L}{M P}=\frac{K L}{N P}$

Find the value of $x$.
23.

24.


## TEST PREP

34. What is the length of $\overline{T U}$ ?
(A) 36
(C) 48
(B) 40
(D) 90
35. Which dimensions guarantee that $\triangle B C D \sim \triangle F G H$ ?

(F) $F G=11.6, G H=8.4$
(G) $F G=12, G H=14$
(H) $F G=11.4, G H=11.4$
(J) $F G=10.5, G H=14.5$

36. $\square A B C D \sim \square E F G H$. Which similarity postulate or theorem lets you conclude that $\triangle B C D \sim \triangle F G H$ ?
(A) AA
(C) SAS
(B) SSS
(D) None of these

37. Gridded Response If 6,8 , and 12 and 15,20 , and $x$ are the lengths of the corresponding sides of two similar triangles, what is the value of $x$ ?

## CHALLENGE AND EXTEND

H.O.T. 38. Prove the SSS Similarity Theorem.

Given: $\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$
Prove: $\triangle A B C \sim \triangle D E F$

(Hint: Assume that $A B<D E$ and choose point $X$ on $\overline{D E}$ so that $\overline{A B} \cong \overline{D X}$. Then choose point $Y$ on $\overline{D F}$ so that $\overleftrightarrow{X Y} \| \overrightarrow{E F}$. Show that $\triangle D X Y \sim \triangle D E F$ and that $\triangle A B C \cong \triangle D X Y$.)
39. Prove the SAS Similarity Theorem.

Given: $\angle B \cong \angle E, \frac{A B}{D E}=\frac{B C}{E F}$
Prove: $\triangle A B C \sim \triangle D E F$

(Hint: Assume that $A B<D E$ and choose point $X$ on $\overline{D E}$ so that $\overline{E X} \cong \overline{B A}$. Then choose point $Y$ on $\overline{E F}$ so that $\angle E X Y \cong \angle E D F$. Show that $\triangle X E Y \sim \triangle D E F$ and that $\triangle A B C \cong \triangle X E F$.)
H.OT. 40. Given $\triangle A B C \sim \triangle X Y Z, \mathrm{~m} \angle A=50^{\circ}, \mathrm{m} \angle X=(2 x+5 y)^{\circ}, \mathrm{m} \angle Z=(5 x+y)^{\circ}$, and that $\mathrm{m} \angle B=(102-x)^{\circ}$, find $\mathrm{m} \angle Z$.

## FOCUS ON MATHEMATICAL PRACTICES

41. Reasoning Explain why angle-side-angle (ASA) is not given as a relationship that proves two triangles are similar.
H.O.T. 42. Justify $\triangle A B C$ and $\triangle J K L$ are isosceles triangles with congruent legs. $\angle B$ and $\angle K$ are both $40^{\circ}$ angles. Must the two triangles be similar? Explain.
H.O.T. 43. Problem Solving $\triangle E F G \sim \triangle P Q R$. The following side lengths are given: $P Q=3$, $Q R=5$, and $E G=24$. The perimeter of $\triangle E F G$ is 56 . Find the unknown side lengths of each triangle.
